Detecting near-native docking decoys by Monte Carlo stability analysis.

نویسنده

  • Stephan Lorenzen
چکیده

Since protein complex crystallization is expensive and time-consuming, computational docking tools provide a valuable method to investigate protein interactions. While the sampling of possible docked conformers of two proteins can be performed efficiently by Fast Fourier Transform (FFT) methods, the selection of near-native decoys from the pool of thousands of possible decoys is still far from being solved. Here, a new approach for docking decoy selection by Monte Carlo stability analysis is presented. In the course of replica exchange Monte Carlo simulations (REMC), replica from near-native decoys show a significantly lower structural diversity than replica from non-native decoys. The effect is successfully applied to rank docking decoys in a benchmark set of 59 protein complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo refinement of rigid-body protein docking structures with backbone displacement and side-chain optimization.

Structures of hitherto unknown protein complexes can be predicted by docking the solved protein monomers. Here, we present a method to refine initial docking estimates of protein complex structures by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy function used is comprised of van der Waals, Coulomb, and atomic contact energy terms. During the simulati...

متن کامل

A simple reference state makes a significant improvement in near-native selections from structurally refined docking decoys

Near-native selections from docking decoys have proved challenging especially when unbound proteins are used in the molecular docking. One reason is that significant atomic clashes in docking decoys lead to poor predictions of binding affinities of near native decoys. Atomic clashes can be removed by structural refinement through energy minimization. Such an energy minimization, however, will l...

متن کامل

Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking

Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality...

متن کامل

EBBA: Efficient Branch and Bound Algorithm for Protein Decoy Generation

We are faced with three major challenges when dealing with the problem of de novo protein structure prediction. One is to determine a suitable energy function having a global minimum near the native structure of the protein. The second challenge is to sample the conformational space such that some of the sampled decoys are near the native structure. The third challenge is to identify the native...

متن کامل

Screened Charge Electrostatic Model in Protein-Protein Docking Simulations

A new method for considering solvation when calculating electrostatics for protein docking is proposed. The solvent-exposed charges are attenuated by induced solvent polarization charges. Modified charges are pre-calculated and the correction doesn't affect the speed of the actual simulation. The new Screened Charge Electrostatic Model (SChEM) results in an improved discrimination of near-nativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007